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Abstract

Crystalline product should exist in optimal polymorphic form. Robust and reliable method for polymorph characterization is of great
importance. In this work, infra red (IR) spectroscopy is applied for monitoring of crystallization process in situ. The results show that
attenuated total reflection Fourier transform infra red (ATR-FTIR) spectroscopy provides valuable information on process, which can be
utilized for more controlled crystallization processes. Diffuse reflectance Fourier transform infra red (DRIFT-IR) is applied for polymorphic
characterization of crystalline product using X-ray powder diffraction (XRPD) as a reference technique. In order to fully utilize DRIFT, the
application of multivariate techniques are needed, e.g., multivariate statistical process control (MSPC), principal component analysis (PCA)
and partial least squares (PLS). The results demonstrate that multivariate techniques provide the powerful tool for rapid evaluation of spectral
data and also enable more reliable quantification of polymorphic composition of samples being mixtures of two or more polymorphs. This
opens new perspectives for understanding crystallization processes and increases the level of safety within the manufacture of pharmaceutics
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction lution, stability and usability in the final dosage foi.
Recently, the U.S. Food and Drug Administration (FDA)
Desired polymorphic form of a crystalline product should have addressed this issue by introducing draft guidance on
be obtained and the product should be characterized quicklyprocess analytical technology (PATJ]. PAT is a system
and reliably. Changes in a polymorphic form can influence for developing and implementing new efficient tools for
the physical properties of a crystalline product, for example, use during pharmaceutical development, manufacturing
mixing, milling and tabletting as well as the pharmaceutical and quality assurance while maintaining or improving
performance of the crystalline product, for instance disso- the current level of product quality assurance. This draft
guideline categorizes PAT tools in four groups: multivariate
* Corresponding author. Tel.: +358 5 621 2152; fax: +358 5 621 2199, dataacquisition and analysis tools, modern process analyzers
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monitoring and control tools, and continuous improvement forms. Crystallizing sulfathiazole, especially from solvent
and knowledge management tools. Therefore, it is of critical mixtures, may result in a single polymorph form or mixtures
importance to develop new approaches to increase the levebf two or more polymorph§f20].
of process understanding in pharmaceutical unit operations.  In this study, sulfathiazole was crystallized from five dif-
Cooling crystallization is an important purification unit ferent mixtures of water and 1-propanol using four different
operation. The supersaturation, which is defined by the constantcooling rates. ATR-FTIR was applied for in situ con-
difference between the solute concentration in ongoing centration measurement to be able to evaluate concentration
crystallization process and the equilibrium concentration of level effects to outcome of product. Further, the polymorphic
the solute, is a driving force of the cooling crystallization compositions of obtained solid-state samples were character-
process and an essential parameter to be monitored tdzed using XRPD and DRIFT. Estimations of polymorphic
control product properties, i.e., size distribution, habit and composition were carried out by correlating calculated XRPD
polymorphism. Attenuated total reflection Fourier transform diffractograms from Cambridge Crystallographic Data
infra red (ATR-FTIR) spectroscopy has been introduced for Center (CCDC) to the XRPD measurements from samples.
in situ concentration measurement in cooling crystallization Multivariate PCA and MSPC analyses were applied and
processe$3-9]. In use of IR for concentration prediction found suitable for analyzing DRIFT data, since with these
purpose, the stable calibration is the most critical issue in methods the samples are easy to classify based on the
order to have reliable concentration predictions. Multivariate dominant polymorph in the sample, abnormal samples can
partial least squares (PLS) calibration has been proved to bebe detected and quality of the samples evaluated. Applying
a suitable method for concentration prediction from spectral PLS analysis to the DRIFT spectra and to results from XRPD
data in crystallization process monitoring applicatif9]. analysis confirmed the quantification made by XRPD and
In order to improve the multivariate calibration, spectra can allowed polymorphic composition predictions to be made
be preprocessed. Traditional filtering methods applied are,from DRIFT data.
e.g., multiplicative signal correction (MSC), Savitzky—Golay
smoothing and standard normal variate (SNV) methods.
However, it has been discussed by several authors that thes@. Materials and methods
methods may also remove information relevant to predicted
variable. One approach is to utilize orthogonal signal 2.1. Crystallization experiments
correction (OSC) filtering methods to remove redundant
or useless variation regarding modeled phenomena from The batch cooling crystallization experiments on sulfathi-
the spectral datfl0]. The calibration procedure with OSC azole were performed in a 4-| jacketed mixing tank equipped
preprocessing, data and model validation steps to predictwith four baffles, a 3-bladed propeller, a condenser and a pro-
solute concentration from crystallization processes using grammable Lauda RK 8 KP thermostat. Pt-100 sensor was
ATR-FTIR has been previously presented by auttibis. used to measure solution temperature inside the crystallizer
The polymorphic composition of a solid material should and measurement data was collected onto a PC. The mixing
be estimated. The product can be a mixture of two or more speed used in all the experiments was 400 rpm. The experi-
polymorphs. The fundamental method giving the structural mental set up is presentedhig. 1
information on a solid material is X-ray powder diffraction Sulfathiazole (Industrias GMB, Spain) was crystallized
(XRPD). Additional technique is beneficial to confirm the es- from water, 1-propanol and aqueous 1-propanol of 50/50,
timation derived from XRPD measurements. Vibration spec- 25/75 and 75/25 wt%. Deionised water and European Phar-
troscopic techniques such as diffuse reflectance (DRIFT) andmacopoeia/United States Pharmacopoeia (EP/USP) grade 1-
attenuated total reflection (ATR) in the mid-FTIR bandwidth propanol (Labscan Ltd., Ireland) were used in the solvent
as well as NIR have previously been applied in polymorph mixture. The suspension was cooled from 80 to°@5at
characterizationfl 2—16] constant cooling rates of 27.5, 9.2, 5.5 and°€fh. The
The multivariate principal component analysis (PCA) and amount of dissolved sulfathiazole corresponded to the solu-
partial least squares regression methods are powerful wherbility in the particular solvent at 80C and were 0.9, 2.2, 20.6,
spectral data is modeled or interpreted. PCA has been appliedl5.8, 10.9 g sulfathiazole/100 g solvent for water, 1-propanol,
by Aaltonen et al[15] for rapid screening of sulfathiazole 50/50, 25/75 and 75/25 wt% mixtures, respectively.
crystals measured with NIR. PCA based multivariate statisti-
cal process control (MSPC) charts are widely used in quality 2.2. In situ attenuated total reflection Fourier transform
measurements in process industry, but those could also benfra red concentration measurements
applied for crystalline sample purity analyses from spectral
data. PLS is suitable for quantitative predictions of sample  The absorbance spectrum was collected from crystallizer

composition from spectral data. in situ with BOMEM MB155S spectrophotometer equipped
In this study, sulfathiazole was used as a model com- with Axiom Analytical Dipper 210 ATR immersion probe.
pound. Its polymorphism has been studied widaly—20] ZnSe was used as a reflecting element. Wave number range

Sulfathiazole is known to have at least four polymorphic from 4000 to 750 cm! was measured. Spectral resolution
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Fig. 1. Crystallization set up.

used was 16 cmt and number of scans 20. Those settings ground before measurement in order to increase relative re-
were found to be a good compromise between the signal toflectance coming out of samples. Spectral resolution used
noise ratio and robustness ofthe measurements. The spectruwas 8 cn* and number of scans was 10. From two to five
was collected with time increments of a minute during the parallel secondary samples from each primary sample were
whole crystallization process. measured.

2.2.1. Calibration measurements 2.5. X-ray powder diffraction measurements

The absorbance spectrum is transformed to the informa-
tion on concentration by deriving a calibration model. The ~ The ground sulfathiazole crystals were measured using a
set of samples with known compositions were measured asGerman-made X-ray powder diffractometer Bruker axs D8.
close as possible to the conditions where true measurementd he X-ray diffraction experiments were performed in sym-
took place. The spectral responses were correlated to commetrical reflection mode with Cud<radiation (1.54A) using
position by PLS modeling. Sulfathiazole concentration from Gobel Mirror bent gradient multilayer optics. The scattered
0 to 30 g sulfathiazole/100 g solvent and solvent composition intensities were measured using a scintillation counter. The
0-100 wt% 1-propanol was covered in calibration measure- angular range was from°5o 40° with steps of 0.05 and
ments. Detailed description of the calibration measurementsa measuring time of 1 s/step. The XRPD patterns measured

is presented ipl1]. were compared to theoretical patterns generated on the basis
of data obtained from CCDC with Cerfi&" (Diffraction-
2.3. Crystal size characterization Crystal module; Accelrys Inc., Cambridge, UK).

Crystal size distributions were obtained using an auto- 2.6. Mathematical methods applied for spectral data

mated image analyzer (PharmaVision 830, Malvern Instru-

ments Ltd.). Sulfathiazole crystals were dispersed evenly on  The spectral data was analyzed using Matlab 6.5 from the
a 100 mmx 100 mm sample plate that was placed on a sam- MatWorks Inc. Calibration modeling for both (a) concentra-
ple tray underneath a video camera. The camera was movedion predictions from in situ ATR-FTIR measurements and
across the sample tray stepwise, and a large set of digitized(b) the data processing for DRIFT spectra were done as fol-
video images was automatically acquired. PharmaVision 830 lows: the quality of the data was evaluated before and after-
software (version 4.2.1.15) was used to process the imagesvards the pre-processing operations using PCA and MSPC.
by separating all the individual crystals and determining size The samples included in the calibration set were selected

parameters for each crystal in the sample. based on data evaluation and previous knowledge on the vari-
ables. Spectra were preprocessed by filtering or/and variable

2 4. Diffuse reflectance Fourier transform infrared selection to improve the model performance. PLS model with

(DRIFT-IR) measurements proper number of dimensions was derived and the model was

validated using external test set. Detailed explanation of cal-

The aim of the DRIFT measurements was to find robust ibration routines applied in this context is describeflia].
way to estimate the polymorphic composition of the crys-
talline bulk material. The samples were measured using a2.6.1. PCA and MSPC analyses
Perkin-Elmer IR spectrometer accompanied with a diffuse = PCA and MSPC charts were applied to the mean-centered
reflectance accessory. Grinded KBr powder was used as thalata before and after the preprocessing. The purpose of this
background inthe measurements. Sulfathiazole samples wergreatment was to find outliers and disturbing regions within
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the spect_raz to investigate the sampk_a clustering when theyyherew andq are loadings of th& andY decompositions,
structure is interpreted, and to ascertain that the applied Pré-respectively. Several such derived components can be calcu-

treatment did not remarkably distort the data structure. lated. The mathematical formulation that describes the PLS
In PCA, the data matrixX) is decomposed as follows: approach is discussed, for instance]2).

A A
X = Z tipiT +E 2.6.3. Processing the ATR-FTIR spectra for in situ

i=1 solute concentration prediction in crystallization process
wheret is the score vector that represent the scaling coeffi-  In the ATR-FTIR concentration measurement, ¥iena-
cients of the samples and can be used to cluster samples tdrix consists of the spectral variables, temperature and solvent
different groups and represent the structure, puage load- composition and th¥ variable is sulfathiazole concentration

ings that represent the most dominant spectral variations ando be predicted. The temperature and solvent composition
can be used to find, e.g., the most important variables in thevariables were scaled to the level of spectral variations and

variable spaceE is residual that is considered ‘noise’. whole X data was centered.

MSPC analysis is based on PCA. Hotelling charts Data preprocessing was applied in order to enhance the
accompanied t@2 contribution charts are formed from score ~ calibration model interpretability and performance. The aim
vectors.T? is calculated by: in preprocessing is to remove information that hinders predic-

A tive ability of the mgdeling. The orthogonal signal correctiqn
Tf _ Z t_l (OSC) preprocessing methoc_;ls were developed for removing

_ § systematic variation iX that is not correlated t§ by en-

=1 suring that the information removed from data matfixs
wherestz is the estimated variance tf mathematically orthogonal t8. In OSC filtering the single

T2 represents the data structure of a particular sample cor-component ‘OSC model’ is built:
responding to the data structure in the mo@ethart andQ
- o X = tosdPysc+ E tosc= Xw [Ixosd| = 1
contributions are detected from squared prediction error of OsMosc T & osc 0SG Oscl

he resi Is of rvation: .
the residuals of observatio wheretosc, poscandwopscare scores and loadings of OSC

k ) component similar to the PLS components, but the score vec-
0= Z(Xnew,i — Xnew) tors tosc) are orthogonal t& . Matrix E one OSC component
i=1 filtered data matrix. If more OSC components are to be fil-

By T2 andQ charts somehow extreme samples either in the (€760 from the data, the filter is appliedEo Eventually.E

model or in the residual space can be found. Contribution is the filtered matrix to be ,USEd i.n, e.g., PLS calibraf@p
charts visualize the variables in the mod&®)(and resid- Several authors have derived different approaches to OSC,

ual (Q) space. By this way, the most important or the most e.g.,[9,23-27] Methods differ from each other by the way

‘disturbing’ variables within spectra can be pointed out and the orthogonal score vectors are fold. In present pre-

possible variable selection applied. The theoretical bases ofd(;CtiVe r(rj]odel, 0SC dfgter inlt(;oducled b)(/jdé.kulddssor{25]
these methods are represented in, e.g., Vandeginst§i]al. (denote QSQH) and by Wold et al[23] ,( enote OSew)
were applied and tested. The proper filtering procedure and

, number of PLS components were validated using an external
2.6.2. Partial least squares model test set. This resulted in 2-dimensional PLS model derived

_ The PLS is a commonly used method to obtain predic- ., four OSC components filtered data. The close descrip-
tive model from collinear data, type which the spectral data tion of the calibration procedure is presenteflit]. The best

obviously represent. The PLS models can have several ady o torming model is selected based on the root mean squared

vantages compared to ordinary regression methods. (1) Inerror of validation (RMSEV) of the test set:
PLS, the collinearity between variables represents a stabi-

lizing advantage rather than a problem, which is the case in
the ordinary regression. (2) The number of objects does notRMSEV = (
restrict the number of wave numbers used in modelling. (3)

PLS can be used to reduce the dimensions of the original ) . .
data and, at the same time, it may reduce the noise level in"/hereéyi is measured ang; ‘predicted response value and

the data. In partial least squares regressionythedX ma- n; is num_b(_ar of samples. RMSEYV for the test sgt i.s suitable
trices are decomposed into the structure and noise parts. Al describing the true performance of the predictive model
score vectot in the column space of (t=Xw) and a vector since it gives estimation on prediction accuracy of the new

uin a column space of (u=Yq). Vectorst andu are fitted samples. In practice, a convergence criteria, presenfedjn
in order to give the maximal squared covariance: is applied for RMSEYV values to select the stable model with

low RMSEYV value that gives accurate enough predictions but
maxU't)? = max@'Y’'Xw)? for|w| = |q the over fitting is avoided.

n;

> (i— 5’1’)2)1/2
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2.6.4. Processing the DRIFT and XRPD data of left out samples affect the model. In addition, external test
crystalline samples set was used to validate the model.
The quantification of polymorphic composition of the
samples was based on the assumption that the experimental
XRPD intensity curve is a linear combination of the inten- 3. Results and discussion
sity of polymorphic components. The crystal structures of the
polymorphic forms were estimated by fitting the simulated 3.1. Concentration prediction from in situ ATR-FTIR
intensity curves of the sulfathiazole polymorphic components measurements and their influence on crystal size and
to the experimental diffraction curve of sample. The amount habit
of a component was calculated as the ratio of the integrals
related to the intensities of the component and the studied Calibration model OSC- and PLS factor selection princi-
samplg14]. The simulated sulfathiazole forms SUTHAZO1, ples in calibration model and evaluation of performance of
SUTHAZ02, SUTHAZ and SUTHAZO05 (CCDC refcodes) selected models is illustrated kig. 2
were used as the polymorphic components. Development of root mean squared errors of vali-
In DRIFT measurement, thématrix consists of the spec- dation (RMSEV) values from 1 to 5 PLS component
tral variables and th& matrix is the polymorphic compo- PLS models for differently pre-treated data is illus-
sitions of SUTHAZ01, SUTHAZO02, SUTHAZ and SUT- trated inFig. 2a. The RMSEV value after the first PLS
HAZO05 estimated from XRPD data for the samples (estima- component in the model is clearly lower after OSC filtering
tion described in following section). After data quality evalu- has been applied, than without OSC filtering. Also, in order
ation, the proper calibration set for PLS model was selected toto obtain best performing model in terms of RMSEV values
have all variation represented but exclude the outlier samples.number of PLS components needed in the model is lower
SeveralY variables can be combined to one single model

if Y variables are correlated with each other. If a descriptor 1-53 a | @ o= ronitered |
phenomenon of the variables is different, it is preferable to Lo . 10SCqy
model each of th¥ s separately. In this study, the correlation - 208Cqy
coefficients between the compositions of SUTHAZ01, SUT- 3 e igzgm
HAZ02 and SUTHAZOS5 were appropriately high (above 0.7) A 50SCew
and those could be modeled by the single PLS model, but thee _ 60SCgyy
correlation of SUTHAZ to other polymorph compositions 108Cay
was too low to be included in the single model. i gggg*\“

Based on the investigation of the variables from MSPC z x 4osc::
the most important variable range appeared to be the ones & 50SCay
from 3700 to 2800 cm?, and this range was selected as the - 808Cyy
X variable range. o

When measuring powdered solids with diffuse reflectance, '  Number ot PLS comonent
the light scattering off the particles can cause irregular varia- P
tion to the spectrum. These differences can be caused by the_ *°; i
variation in the particle size or the alignment of the incident g 2° R —"—
beam of lighf28]. In this context, standard normal variation 210 ®
(SNV) [28] correction is used. SNV corrected spectrumis g % 5 16 . 20 2%

_ 3%
Aisny) = T N . e
Lja(Aij—a) 50
(p-1) é 3;6 5 10 15 20 25
Q

whereA is then x p matrix of training set spectral responses _}3 20 i i —  —
for all the wavelengthg,the single measuremempnumber 510 T
of samplesp number of variables within the spectrum and £ %4-*3*"/'/;_ - s 2 2
a; is the average of all the spectral responses in the vector. Measured concentration (g stz/100 g solvent)
SNV attempts to correct the effects of light scattering and the + Calibration set o Testset —— Calibration line
particle size was found to improve the data for multivariate
modeling purposeg8]. Fig. 2. ATR-FTIR calibration model. (a) Root mean squared error of predic-

The PLS model was applied for the SNV treated data and tion for the tgst set for the models derived fr.om non-filtered,gﬁﬂlered
the proper number of PLS components was selected base(ind OSGH filtered data. Observed vs. predicted concentrations from (b) 5-
prop L L . P - omponent PLS model from non-filtered data, (c) 2-component PLS model
on cross validation criteria, which was done by recalculating from osay filtered (2-comp.) data, (d) 2-component PLS mode! from

the model by leaving samples out and evaluating how these0osGyy filtered (3-comp.) data.
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(Fig. 4). The concentration level was most likely high enough

‘ ‘ to exceed metastable limit throughout the crystallization
80 70 60 50 40 30 with 27.5°C/h cooling rate. This caused the solution cool
Temperature (C) down faster than the solute could transfer onto existing

crystals, and consequently the spontaneous nucleation took
place throughout the process.

The concentration level lowered significantly when cool-
ing rate decreased from 27.5 to 3®h (Fig. 3). Most likely
for the model derived from OSC filtered data than a model the level of primary nucleation during the crystallization was
built-up from non-filtered dataFig. 2a). The observed small with cooling rates from 9.2 to 3°@/h since also the
concentrations versus predicted concentrations using threesize distribution became narrower than with cooling rate of
models derived from three differently pre-treated calibration 27.5°C/h. With 3.9°C/h cooling rate, however, influence of
data are presented iRig. 2o—d. It can be seen that the attrition of crystals may have become greater, since the size
prediction accuracy is sufficient for all compared models and distribution is slightly broader than with cooling rates of 9.2
differences are only of a minor scale. However, comparison or 5.5°C/h. (Fig. 4)
of the residuals in observed versus predicted revealed that On the reliability of the predictions, the process conditions
the OSGH performed slightly the best. differed both chemically (the highest supersaturation) and

Concentration profiles were measured from all crystal- physically (new crystals forming throughout the process)
lizations to characterize the role of cooling on outcome of from the calibration measurements remarkably when the
sulfathiazole crystals. Sudden decrease in concentration inhighest, 27.5C/h, cooling rate was used. Therefore, the
the beginning of crystallization process indicates the primary predictions from that crystallization experiment are the
nucleation, i.e., the metastable limit was exceeded at thatmost uncertain of all crystallizations; predicted values are
point (Fig. 3). probably higher than true values. However, the trend of

The decrease in concentration level was remarkable inincreasing supersaturation compared to other crystallizations
these experiments because only spontaneous nucleation tookan be investigated. With other cooling rates from 9.2 to

____ STZ crystallization from 1:1 w-p, lincar cooling mode place. With seed crystals the onset of crystallization is
*a 25 T T T — T . .

g - cooling rate 27.5 C/h usually less drastic. The width of the metastable zone
S s s === cooling rate 9.5 C/h became wider as the cooling rate increased being as it
% oS JUNURTUIE SOOI cooling rate 5.5 C/h || : o P

Py : ‘ — cooling rate 3.9 C/h narrowest at 3C (80-75°C) with 3.9°C/h cooling rate

= ‘ —#- solubility curve and the widest at 8C (80-72°C) with 27.5°C/h cooling

g I ‘ § : rate.

) ;‘,j T, : : With the highest cooling rate, 27°&/h, the predicted

§ 10 frereeeeeeee Ny supersaturation was extremely higkid. 3). Also, the

g j broadest size distribution of crystals and the most irregular
8 sl X : shaped crystals were obtained with 273h cooling rate

§ H H + |

N

[_‘

w2

Fig. 3. The concentration profiles from cooling crystallization process with
four different cooling rates.

Projected surface area [%]

0 ; Pt e ; L
10 10° 10
Crystal length [um]

Fig. 4. Cumulative size distributions of the product crystals from sulfathiazole crystallizations using four different cooling rates.
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Fig. 5. References of the X-ray diffraction patterns of polymorphs of sulfathiazole.

3.9°C/h, the process conditions were close to the calibration 3.2. Polymorph characterization

measurements as well as close to the values of the validation

procedure [20]. Therefore, the predictions from those 3.2.1. XRPD patterns

measurements can be considered reliable not only by trend The theoretical XRPD patterns (CCDC) of sulfathiazole

but also the true concentration value. polymorphs are presentedHig. 5.

Table 1

Compositions of sulfathiazole samples

Sample XRPD results Calibration set Test set

Polymorph: SUTHAZ 01 02 05 01 02 05 01 02 05
Bulk 0.2 0.5 0.2 0.1 0.2£0.01 0.51+0.01 0.09£0.01 0.140.01 0.54£0.01 0.08+0.01
P25W75A 0.2 0.8 0 0 0.240.04 0.6A40.03 n.d. 0.23:0.05 0.73+:0.05 n.d.
P25W75A 0.3 0.7 0 0 0.2£0.05 0.69:0.01 n.d. 0.24:0.03 0.73£0.02 n.d.
P25W75B 0.2 0.6 0.2 0 0.220.04 0.6A40.01 n.d. 0.1&0.05 0.6%-0.05 n.d.
P25W75C 0.2 0.6 0.2 0 0.240.05 0.6740.04 n.d. 0.18:0.02 0.71£0.04 n.d.
P25W75D 0.3 0.6 0.1 0 0.380.05 0.65+0.04 n.d. 0.2&0.00 0.7140.01 n.d.
P25W75D 0.3 0.7 0 0 0.360.05 0.7G+£0.04 n.d. 0.25:0.05 0.71£0.05 n.d.
P50W50A 0.2 0.6 0.2 0 0.260.02 0.66+ 0.04 n.d.

P50W50A 0.2 0.7 0.1 0 0.220.02 0.7G£0.04 n.d. 0.12£0.04 0.73£0.02 n.d.
P50W50B 0.2 0.7 0.1 0 0.280.04 0.66+ 0.00 n.d. 0.23:0.05 0.7140.05 n.d.
P50W50C 0.4 0.6 0 0 0.380.05 0.7G+£0.04 n.d. 0.3&0.05 0.75£0.05 n.d.
P50W50D 0.2 0.7 0.1 0 0.280.05 0.7G+ 0.04 n.d. 0.26:0.04 0.73+0.04 n.d.
P50W50D 0.2 0.8 0 0 0.250.07 0.7G+£0.03 n.d. 0.24:0.09 0.75£0.00 n.d.
P75W25A 0.1 0.8 0.1 0 0.150.05 0.75+0.04 n.d. 0.14£0.05 0.79+-0.05 n.d.
P75W25A 0.3 0.7 0 0 0.280.09 0.6740.04 n.d. 0.25:0.07 0.72:0.05 n.d.
P75W25B 0.3 0.6 0.1 0 0.280.03 0.65+0.01 n.d. 0.2 0.05 0.72+0.05 n.d.
P75W25C 0.2 0.7 0.1 0 0.240.00 0.69+-0.03 n.d. 0.1%£0.05 0.75:0.05 n.d.
P75W25C 0.2 0.7 0.1 0 0.280.05 0.73:0.05 n.d.

P75W25D 0.2 0.7 0.1 0 0.220.04 0.70+0.06 n.d. 0.26£0.12 0.73+:0.06 n.d.
P75W25D 0.4 0.6 0 0 0.3£0.05 0.7G+ 0.04 n.d. 0.26£0.05 0.76+0.05 n.d.
PA 0.7 0.1 0 0.2 0.78:0.06 0.114-0.08 0.20+0.00 0.64+0.05 0.1A40.04 n.d.
PD 0.7 0.2 0 0.1 0.6&0.14 0.20+0.22 0.114-0.14 0.7+ 0.05 0.15+0.16 n.d.
PD 0.7 0.1 0 0.2 0.6&0.11 0.24+0.06 n.d.
WA 0.2 0.7 0.1 0 0.1&0.01 0.75-0.01 n.d.
WD 0.3 0.7 0 0 0.31+0.05 0.66+0.04 0.02+:0.02 0.28+0.05 0.7140.05 n.d.

Mean estimated level of confidence of estimated compositions based on XRPD measuteth&n8&ample names consist on solvent composition, P, 1-
propanol, W, water and numbers behind the letters represent percentage composition in solvent and cooling rate is represented in the findl &t®&h,A =2
B=9.5°C/h, C=6.5C/h, D=3.9°C/h.
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Sample containing mainly SUTHAZ02 different fractions of other polymorphs, represent the slight
: i : ; ; ; differences compared to example spectrufiq 6: the vari-
AR SR PN S Ul RN ation in ratio of bands in 3351 and 3279this different

; ; : when the minor polymorph composition changes. Conse-
e AR S T S quently, the polymorphic composition of samples could be

o : , , i , | studied further by multivariate analysis within the spectral

4000 3500 3000 2500 2000 1500 1000 range from 3500 to 2500 cm. The primary analysis of co-
]Sa;lspgle containing mainly SUTHAZO1 variance confirmed this being the most relevant spectral band
I ; range for analysis purposes. There is also lot of information
L R | nrvasd iy R R S in spectral range from 1800 to 600 th but the relation to

i : : ‘ the polymorph composition seems to be more apparent in the
range of 3500—2500 cnt in terms of multivariate analysis.

T

Absorbance
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0 i i i i i i
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3.2.3. MSPC analysis of DRIFT spectra
MSPC charts are visualized Fig. 7.
Fig. 6. Example DRIFT spectra. Upper left corner ofig. 7visualizes how the samples are
located within the modell€ chart) and 95% limit line is pre-
These diffraction patterns were used as reference valuessented. Upper right hand cornerféify. 7 visualizes the 95%
in estimation of polymorphic composition of the samples. confidence levels for the variables within the model and the
XRPD patterns from samples revealed that the samplesvariables of example sample in that chdi ¢ontributions).
crystallized from pure 1-propanol represented mostly Most of the samples lied within the 95% confidence limit in
SUTHAZO01 and ones crystallized from water or aqueous 1- theT? chart inFig. 7. The samples exceeding the confidence
propanol represented mostly SUTHAZO02. However, most of limit were the ones crystallized from pure 1-propanol and
the samples were more or less mixtures of two or more poly- represent SUTHAZO01 based on XRPD. It could be seen from

morphs as is illustrated from quantification resulfable 1 T2 contributions inFig. 7that the spectral range where these
samples exceeded the confidence limit was the area where
3.2.2. DRIFT spectra two intense bands typical for SUTHAZO1 were located.

Example spectra of sulfathiazole solid-state samples in MSPC charts proved to be capable for determining which
Fig. 6 illustrate that the visible difference in the spectrum polymorph the particular sample represent. Lower left corner
lies within the wave number range from 3500 to 3250¢m of Fig. 7 represents the residuals of the sampfeskart),

There are two intense characteristic bands at 3467 andi.e., how the samples are located in residual space. Lower
3365 cnTlin the spectrum obtained from sample contain- right corner represents 95% confidence limits of the variance
ing mostly SUTHAZO1 that do not occur in the spectrum of the data that is left in the residual® (contributions).
measured from sample containing mostly SUTHAZ02. The In Q chart, some samples represent unexceptional baseline
spectrafrom samples containing mostly SUTHAZO02, butalso behavior as is seen @@ contribution chart. Therefore, MSPC

e
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Fig. 7. MSPC charts of the DRIFT data.
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values in columns from two to five, and the compositions
predicted from DRIFT spectra for the calibration set and

i I IS N A test set are represented in columns from 6 to 10. As
0-0004 . -ooooeremefr R TO WES R mentioned in Sectio2.4.1, SUTHAZ01, SUTHAZ02 and

0.0008

§ 0.000 | ... SUTHAZO05 could be modeled by the single PLS model
g : - SIETRAL L and the PLS modeling results exist only for these three
o 0.0004.] __...----i - B Cg N D polymorphs.

0.0008 _ooroent ’ A It can be observed that concentration predictions for

] — : both calibration and test sets are consistent with XRPD

0005 N results. Main components SUTHAZO1 and SUTHAZO02
0.005 ‘ can be predicted with appropriate accuracy compared to

- - 0.004  0.006 accuracy of XRPD predictions. Also, the small fractions

(28'{)20/)-0-005 0002 000 - (507'(;?;) of SUTHAZO05 can be distinguished from DRIFT data via

PLS analysis, which indicates that actual differences exist
Fig. 8. Score vectors of PCA analysis of the DRIFT spectra. Percentage within the data when sample COI’I_taII’lS even small fractions
of variation explainedR?) by a particular score vector is represented in  Of _ SUTHAZO5 to that when this polymorph does not
parenthesis. exist.
The prediction result is strongly restricted by the fact
that the accuracy of the reference values out of XRPD
charts were powerful in determining also possible errors results is rather low. The predictions obtained when using
within the measurement procedure. PLS model, can be said to give encouraging results, since
Generally speaking, MSPC illustrates whether or not variances of the predictions of parallel DRIFT samples are
particular sample represents similar data structure than therather low and, despite of the high uncertainty of reference
other samples and also which variables, i.e., spectral pointsxRPD values, the compositions predicted using PLS model
cause these samples to be different. In practice, the samplegompromise fairly well to observations, i.e., to XRPD
representing polymorphs different than modeled ones canresylts.
be separated. However, to distinguish between the samples
being erroneous measurements or sample representing®.2.6. Process condition effects on polymorphic outcome
phenomenon different than the average modeled samples do, Theoretically, the level of supersaturation could influence
knowledge on the samples and their properties or extendedin the polymorphic outcome of the crystals due to the fact

data set is needed. that solubilities of the specific polymorphs to the particular
solvent are differenfl]. In principle, if the cooling takes
3.2.4. PCA score vectors of DRIFT spectra place at concentration level that lies between the solubil-
From the three first score vectors of PCA plotteéig. 8, ity of two polymorphs, the polymorph with lower solubility
it can be observed that samples tend to cluster into two mainshould appear. If the concentration level could be carefully
groups. controlled, it might be possible to control the polymorphic

The first group consisted of the samples that were crys- outcome of product crystals. Obtaining a product that would
tallized from 1-propanol (PD and PA) representing mainly contain the desired polymorph only is complicated by the
SUTHAZO01 based on XRPD. The other group consisted stepwise conversion between different forms. As stated by
of the samples crystallized from solvents containing water Ostwald’s law, a metastable polymorph will eventually un-
and main component according to XRPD was SUTHAZO02. dergo a phase transformation to a more stable one, and finally
In bigger clusterfig. 8), the samples from water (WA and  to the thermodynamically most stable form. In addition, the
WD) the most pure SUTHAZ02 samples lied in the bottom formation of polymorphs can be driven by several different
and the bulk samples (Bulk), which were the most impure factors in crystallization; one being the solvent composition

samples at the top of the group. and the most dominant factor is not unambiguously resolved
PCA provides illustrative tool to separate samples based by the time beind1].
on their main polymorph component. In addition, PCA in- In this study, polymorphic composition of the product

dicates whether or not there is systematic trend in how the crystals seemed not to depend on the cooling rate used
samples settle within the cluster in the space of score vec-although the concentration levels in crystallization were re-
tors and that could lead to the possibility to separate also markably differentFig. 3), but the polymorph compositions

small-scale changes within the sample composition. of product crystals crystallized from certain solvent were
almost equal. This can be due to the fact that differences
3.2.5. PLS analysis in solubilities of different sulfathiazole polymorphs for

The results of PLS analysis of the samples are representecexample in 1-propanol are rather smalv]. As was previ-
in Table 1 XRPD results for polymorphs SUTHAZO1, SUT- ously mentioned, the dominant effect for the polymorphic
HAZ02, SUTHAZ and SUTHAZO05 were used as observed outcome of crystals appeared to be the solvent composition
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and more specifically whether or not the solvent contained References
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