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Crystalline product should exist in optimal polymorphic form. Robust and reliable method for polymorph characterization is
mportance. In this work, infra red (IR) spectroscopy is applied for monitoring of crystallization process in situ. The results s
ttenuated total reflection Fourier transform infra red (ATR-FTIR) spectroscopy provides valuable information on process, whi
tilized for more controlled crystallization processes. Diffuse reflectance Fourier transform infra red (DRIFT-IR) is applied for poly
haracterization of crystalline product using X-ray powder diffraction (XRPD) as a reference technique. In order to fully utilize DR
pplication of multivariate techniques are needed, e.g., multivariate statistical process control (MSPC), principal component anal
nd partial least squares (PLS). The results demonstrate that multivariate techniques provide the powerful tool for rapid evaluation
ata and also enable more reliable quantification of polymorphic composition of samples being mixtures of two or more polymo
pens new perspectives for understanding crystallization processes and increases the level of safety within the manufacture of ph
2005 Elsevier B.V. All rights reserved.
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. Introduction

Desired polymorphic form of a crystalline product should
e obtained and the product should be characterized quickly
nd reliably. Changes in a polymorphic form can influence

he physical properties of a crystalline product, for example,
ixing, milling and tabletting as well as the pharmaceutical
erformance of the crystalline product, for instance disso-

∗ Corresponding author. Tel.: +358 5 621 2152; fax: +358 5 621 2199.
E-mail address:Kati.Pollanen@lut.fi (K. P̈ollänen).

lution, stability and usability in the final dosage form[1].
Recently, the U.S. Food and Drug Administration (FD
have addressed this issue by introducing draft guidanc
process analytical technology (PAT)[2]. PAT is a system
for developing and implementing new efficient tools
use during pharmaceutical development, manufactu
and quality assurance while maintaining or improv
the current level of product quality assurance. This d
guideline categorizes PAT tools in four groups: multivar
data acquisition and analysis tools, modern process ana
or process analytical chemistry tools, process and end
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monitoring and control tools, and continuous improvement
and knowledge management tools. Therefore, it is of critical
importance to develop new approaches to increase the level
of process understanding in pharmaceutical unit operations.

Cooling crystallization is an important purification unit
operation. The supersaturation, which is defined by the
difference between the solute concentration in ongoing
crystallization process and the equilibrium concentration of
the solute, is a driving force of the cooling crystallization
process and an essential parameter to be monitored to
control product properties, i.e., size distribution, habit and
polymorphism. Attenuated total reflection Fourier transform
infra red (ATR-FTIR) spectroscopy has been introduced for
in situ concentration measurement in cooling crystallization
processes[3–9]. In use of IR for concentration prediction
purpose, the stable calibration is the most critical issue in
order to have reliable concentration predictions. Multivariate
partial least squares (PLS) calibration has been proved to be
a suitable method for concentration prediction from spectral
data in crystallization process monitoring applications[5–9].
In order to improve the multivariate calibration, spectra can
be preprocessed. Traditional filtering methods applied are,
e.g., multiplicative signal correction (MSC), Savitzky–Golay
smoothing and standard normal variate (SNV) methods.
However, it has been discussed by several authors that these
methods may also remove information relevant to predicted
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forms. Crystallizing sulfathiazole, especially from solvent
mixtures, may result in a single polymorph form or mixtures
of two or more polymorphs[20].

In this study, sulfathiazole was crystallized from five dif-
ferent mixtures of water and 1-propanol using four different
constant cooling rates. ATR-FTIR was applied for in situ con-
centration measurement to be able to evaluate concentration
level effects to outcome of product. Further, the polymorphic
compositions of obtained solid-state samples were character-
ized using XRPD and DRIFT. Estimations of polymorphic
composition were carried out by correlating calculated XRPD
diffractograms from Cambridge Crystallographic Data
Center (CCDC) to the XRPD measurements from samples.
Multivariate PCA and MSPC analyses were applied and
found suitable for analyzing DRIFT data, since with these
methods the samples are easy to classify based on the
dominant polymorph in the sample, abnormal samples can
be detected and quality of the samples evaluated. Applying
PLS analysis to the DRIFT spectra and to results from XRPD
analysis confirmed the quantification made by XRPD and
allowed polymorphic composition predictions to be made
from DRIFT data.

2. Materials and methods
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ariable. One approach is to utilize orthogonal sig
orrection (OSC) filtering methods to remove redund
r useless variation regarding modeled phenomena

he spectral data[10]. The calibration procedure with OS
reprocessing, data and model validation steps to pr
olute concentration from crystallization processes u
TR-FTIR has been previously presented by authors[11].

The polymorphic composition of a solid material sho
e estimated. The product can be a mixture of two or m
olymorphs. The fundamental method giving the struc

nformation on a solid material is X-ray powder diffracti
XRPD). Additional technique is beneficial to confirm the
imation derived from XRPD measurements. Vibration s
roscopic techniques such as diffuse reflectance (DRIFT
ttenuated total reflection (ATR) in the mid-FTIR bandwi
s well as NIR have previously been applied in polymo
haracterizations[12–16].

The multivariate principal component analysis (PCA)
artial least squares regression methods are powerful
pectral data is modeled or interpreted. PCA has been ap
y Aaltonen et al.[15] for rapid screening of sulfathiazo
rystals measured with NIR. PCA based multivariate sta
al process control (MSPC) charts are widely used in qu
easurements in process industry, but those could al
pplied for crystalline sample purity analyses from spe
ata. PLS is suitable for quantitative predictions of sam
omposition from spectral data.

In this study, sulfathiazole was used as a model c
ound. Its polymorphism has been studied widely[17–20].
ulfathiazole is known to have at least four polymorp
.1. Crystallization experiments

The batch cooling crystallization experiments on sulfa
zole were performed in a 4-l jacketed mixing tank equip
ith four baffles, a 3-bladed propeller, a condenser and a
rammable Lauda RK 8 KP thermostat. Pt-100 sensor
sed to measure solution temperature inside the crysta
nd measurement data was collected onto a PC. The m
peed used in all the experiments was 400 rpm. The ex
ental set up is presented inFig. 1.
Sulfathiazole (Industrias GMB, Spain) was crystalli

rom water, 1-propanol and aqueous 1-propanol of 50
5/75 and 75/25 wt%. Deionised water and European P
acopoeia/United States Pharmacopoeia (EP/USP) gr
ropanol (Labscan Ltd., Ireland) were used in the sol
ixture. The suspension was cooled from 80 to 25◦C at

onstant cooling rates of 27.5, 9.2, 5.5 and 3.9◦C/h. The
mount of dissolved sulfathiazole corresponded to the
ility in the particular solvent at 80◦C and were 0.9, 2.2, 20.
5.8, 10.9 g sulfathiazole/100 g solvent for water, 1-propa
0/50, 25/75 and 75/25 wt% mixtures, respectively.

.2. In situ attenuated total reflection Fourier transform
nfra red concentration measurements

The absorbance spectrum was collected from crysta
n situ with BOMEM MB155S spectrophotometer equipp
ith Axiom Analytical Dipper 210 ATR immersion prob
nSe was used as a reflecting element. Wave number

rom 4000 to 750 cm−1 was measured. Spectral resolut
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Fig. 1. Crystallization set up.

used was 16 cm−1 and number of scans 20. Those settings
were found to be a good compromise between the signal to
noise ratio and robustness of the measurements. The spectrum
was collected with time increments of a minute during the
whole crystallization process.

2.2.1. Calibration measurements
The absorbance spectrum is transformed to the informa-

tion on concentration by deriving a calibration model. The
set of samples with known compositions were measured as
close as possible to the conditions where true measurements
took place. The spectral responses were correlated to com-
position by PLS modeling. Sulfathiazole concentration from
0 to 30 g sulfathiazole/100 g solvent and solvent composition
0–100 wt% 1-propanol was covered in calibration measure-
ments. Detailed description of the calibration measurements
is presented in[11].

2.3. Crystal size characterization

Crystal size distributions were obtained using an auto-
mated image analyzer (PharmaVision 830, Malvern Instru-
ments Ltd.). Sulfathiazole crystals were dispersed evenly on
a 100 mm× 100 mm sample plate that was placed on a sam-
ple tray underneath a video camera. The camera was moved
a itized
v 830
s ages
b size
p

2
(

bust
w rys-
t ing a
P fuse
r s the
b were

ground before measurement in order to increase relative re-
flectance coming out of samples. Spectral resolution used
was 8 cm−1 and number of scans was 10. From two to five
parallel secondary samples from each primary sample were
measured.

2.5. X-ray powder diffraction measurements

The ground sulfathiazole crystals were measured using a
German-made X-ray powder diffractometer Bruker axs D8.
The X-ray diffraction experiments were performed in sym-
metrical reflection mode with Cu K� radiation (1.54̊A) using
Göbel Mirror bent gradient multilayer optics. The scattered
intensities were measured using a scintillation counter. The
angular range was from 5◦ to 40◦ with steps of 0.05◦ and
a measuring time of 1 s/step. The XRPD patterns measured
were compared to theoretical patterns generated on the basis
of data obtained from CCDC with Cerius2TM (Diffraction-
Crystal module; Accelrys Inc., Cambridge, UK).

2.6. Mathematical methods applied for spectral data

The spectral data was analyzed using Matlab 6.5 from the
MatWorks Inc. Calibration modeling for both (a) concentra-
tion predictions from in situ ATR-FTIR measurements and
( s fol-
l fter-
w SPC.
T cted
b vari-
a riable
s with
p l was
v f cal-
i

2
tered

d f this
t thin
cross the sample tray stepwise, and a large set of dig
ideo images was automatically acquired. PharmaVision
oftware (version 4.2.1.15) was used to process the im
y separating all the individual crystals and determining
arameters for each crystal in the sample.

.4. Diffuse reflectance Fourier transform infrared
DRIFT-IR) measurements

The aim of the DRIFT measurements was to find ro
ay to estimate the polymorphic composition of the c

alline bulk material. The samples were measured us
erkin-Elmer IR spectrometer accompanied with a dif

eflectance accessory. Grinded KBr powder was used a
ackground in the measurements. Sulfathiazole samples
b) the data processing for DRIFT spectra were done a
ows: the quality of the data was evaluated before and a
ards the pre-processing operations using PCA and M
he samples included in the calibration set were sele
ased on data evaluation and previous knowledge on the
bles. Spectra were preprocessed by filtering or/and va
election to improve the model performance. PLS model
roper number of dimensions was derived and the mode
alidated using external test set. Detailed explanation o
bration routines applied in this context is described in[12].

.6.1. PCA and MSPC analyses
PCA and MSPC charts were applied to the mean-cen

ata before and after the preprocessing. The purpose o
reatment was to find outliers and disturbing regions wi
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the spectra, to investigate the sample clustering when the
structure is interpreted, and to ascertain that the applied pre-
treatment did not remarkably distort the data structure.

In PCA, the data matrix (X) is decomposed as follows:

X̂ =
A∑

i=1

tipT
i + E

wheret is the score vector that represent the scaling coeffi-
cients of the samples and can be used to cluster samples to
different groups and represent the structure, andp are load-
ings that represent the most dominant spectral variations and
can be used to find, e.g., the most important variables in the
variable space.E is residual that is considered ‘noise’.

MSPC analysis is based on PCA. Hotelling’sT2 charts
accompanied toT2 contribution charts are formed from score
vectors.T2 is calculated by:

T 2
A =

A∑
i=1

t2i
s2ti

wheres2t is the estimated variance oft i .
T2 represents the data structure of a particular sample cor-

responding to the data structure in the model.Q chart andQ
contributions are detected from squared prediction error of
the residuals of observation:
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wherew andq are loadings of theX andY decompositions,
respectively. Several such derived components can be calcu-
lated. The mathematical formulation that describes the PLS
approach is discussed, for instance, in[22].

2.6.3. Processing the ATR-FTIR spectra for in situ
solute concentration prediction in crystallization process

In the ATR-FTIR concentration measurement, theX ma-
trix consists of the spectral variables, temperature and solvent
composition and theY variable is sulfathiazole concentration
to be predicted. The temperature and solvent composition
variables were scaled to the level of spectral variations and
wholeX data was centered.

Data preprocessing was applied in order to enhance the
calibration model interpretability and performance. The aim
in preprocessing is to remove information that hinders predic-
tive ability of the modeling. The orthogonal signal correction
(OSC) preprocessing methods were developed for removing
systematic variation inX that is not correlated toY by en-
suring that the information removed from data matrixX is
mathematically orthogonal toY. In OSC filtering the single
component ‘OSC model’ is built:

X = tOSCpT
OSC+ E, tOSC = XwOSC, ||xOSC|| = 1

w SC
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y T2 andQ charts somehow extreme samples either in
odel or in the residual space can be found. Contribu

harts visualize the variables in the model (T2) and resid
al (Q) space. By this way, the most important or the m

disturbing’ variables within spectra can be pointed out
ossible variable selection applied. The theoretical bas

hese methods are represented in, e.g., Vandeginste et a[21].

.6.2. Partial least squares model
The PLS is a commonly used method to obtain pre

ive model from collinear data, type which the spectral
bviously represent. The PLS models can have severa
antages compared to ordinary regression methods. (
LS, the collinearity between variables represents a s

izing advantage rather than a problem, which is the ca
he ordinary regression. (2) The number of objects doe
estrict the number of wave numbers used in modelling
LS can be used to reduce the dimensions of the ori
ata and, at the same time, it may reduce the noise le

he data. In partial least squares regression, theY andX ma-
rices are decomposed into the structure and noise pa
core vectort in the column space ofX (t = Xw) and a vecto
in a column space ofY (u=Yq). Vectorst andu are fitted

n order to give the maximal squared covariance:

ax(u’ t)2 = max(q’Y’Xw)2 for |w| = |q|
heretOSC, pOSCandwOSCare scores and loadings of O
omponent similar to the PLS components, but the score
ors (tOSC) are orthogonal toY. MatrixEone OSC compone
ltered data matrix. If more OSC components are to be
ered from the data, the filter is applied toE. Eventually,E
s the filtered matrix to be used in, e.g., PLS calibration[9].
everal authors have derived different approaches to
.g.,[9,23–27]. Methods differ from each other by the w

he orthogonal score vectors are found[23]. In present pre
ictive model, OSC filter introduced by Höskuldsson[25]
denoted OSCAH) and by Wold et al.[23] (denoted OSCSW)
ere applied and tested. The proper filtering procedure
umber of PLS components were validated using an ext

est set. This resulted in 2-dimensional PLS model de
rom four OSC components filtered data. The close des
ion of the calibration procedure is presented in[11]. The bes
erforming model is selected based on the root mean sq
rror of validation (RMSEV) of the test set:

MSEV =
(∑

(yi − ŷi)2

ni

)1/2

hereyi is measured and ˆyi predicted response value a
i is number of samples. RMSEV for the test set is suit
or describing the true performance of the predictive m
ince it gives estimation on prediction accuracy of the
amples. In practice, a convergence criteria, presented i[21]
s applied for RMSEV values to select the stable model
ow RMSEV value that gives accurate enough prediction
he over fitting is avoided.
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2.6.4. Processing the DRIFT and XRPD data of
crystalline samples

The quantification of polymorphic composition of the
samples was based on the assumption that the experimental
XRPD intensity curve is a linear combination of the inten-
sity of polymorphic components. The crystal structures of the
polymorphic forms were estimated by fitting the simulated
intensity curves of the sulfathiazole polymorphic components
to the experimental diffraction curve of sample. The amount
of a component was calculated as the ratio of the integrals
related to the intensities of the component and the studied
sample[14]. The simulated sulfathiazole forms SUTHAZ01,
SUTHAZ02, SUTHAZ and SUTHAZ05 (CCDC refcodes)
were used as the polymorphic components.

In DRIFT measurement, theX matrix consists of the spec-
tral variables and theY matrix is the polymorphic compo-
sitions of SUTHAZ01, SUTHAZ02, SUTHAZ and SUT-
HAZ05 estimated from XRPD data for the samples (estima-
tion described in following section). After data quality evalu-
ation, the proper calibration set for PLS model was selected to
have all variation represented but exclude the outlier samples.

SeveralY variables can be combined to one single model
if Y variables are correlated with each other. If a descriptor
phenomenon of the variables is different, it is preferable to
model each of theYs separately. In this study, the correlation
coefficients between the compositions of SUTHAZ01, SUT-
H .7)
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left out samples affect the model. In addition, external test
set was used to validate the model.

3. Results and discussion

3.1. Concentration prediction from in situ ATR-FTIR
measurements and their influence on crystal size and
habit

Calibration model OSC- and PLS factor selection princi-
ples in calibration model and evaluation of performance of
selected models is illustrated inFig. 2.

Development of root mean squared errors of vali-
dation (RMSEV) values from 1 to 5 PLS component
PLS models for differently pre-treated data is illus-
trated in Fig. 2a. The RMSEV value after the first PLS
component in the model is clearly lower after OSC filtering
has been applied, than without OSC filtering. Also, in order
to obtain best performing model in terms of RMSEV values
number of PLS components needed in the model is lower

Fig. 2. ATR-FTIR calibration model. (a) Root mean squared error of predic-
tion for the test set for the models derived from non-filtered, OSCsw filtered
and OSCAH filtered data. Observed vs. predicted concentrations from (b) 5-
component PLS model from non-filtered data, (c) 2-component PLS model
from OSCSW filtered (2-comp.) data, (d) 2-component PLS model from
OSCAH filtered (3-comp.) data.
AZ02 and SUTHAZ05 were appropriately high (above 0
nd those could be modeled by the single PLS model, bu
orrelation of SUTHAZ to other polymorph compositio
as too low to be included in the single model.
Based on the investigation of the variables from MS

he most important variable range appeared to be the
rom 3700 to 2800 cm−1, and this range was selected as

variable range.
When measuring powdered solids with diffuse reflecta

he light scattering off the particles can cause irregular v
ion to the spectrum. These differences can be caused b
ariation in the particle size or the alignment of the incid
eam of light[28]. In this context, standard normal variat
SNV) [28] correction is used. SNV corrected spectrum

i(SNV) = Ai − āi√∑p

j=1(Ai,j−āi)

(p−1)

hereA is then×pmatrix of training set spectral respon
or all the wavelengths,i the single measurement,n number
f samples,p number of variables within the spectrum a
ī is the average of all the spectral responses in the ve
NV attempts to correct the effects of light scattering and
article size was found to improve the data for multivar
odeling purposes[28].
The PLS model was applied for the SNV treated data

he proper number of PLS components was selected b
n cross validation criteria, which was done by recalcula

he model by leaving samples out and evaluating how t
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Fig. 3. The concentration profiles from cooling crystallization process with
four different cooling rates.

for the model derived from OSC filtered data than a model
built-up from non-filtered data (Fig. 2a). The observed
concentrations versus predicted concentrations using three
models derived from three differently pre-treated calibration
data are presented inFig. 2b–d. It can be seen that the
prediction accuracy is sufficient for all compared models and
differences are only of a minor scale. However, comparison
of the residuals in observed versus predicted revealed that
the OSCAH performed slightly the best.

Concentration profiles were measured from all crystal-
lizations to characterize the role of cooling on outcome of
sulfathiazole crystals. Sudden decrease in concentration in
the beginning of crystallization process indicates the primary
nucleation, i.e., the metastable limit was exceeded at that
point (Fig. 3).

The decrease in concentration level was remarkable in
these experiments because only spontaneous nucleation took

place. With seed crystals the onset of crystallization is
usually less drastic. The width of the metastable zone
became wider as the cooling rate increased being as it
narrowest at 5◦C (80–75◦C) with 3.9◦C/h cooling rate
and the widest at 8◦C (80–72◦C) with 27.5◦C/h cooling
rate.

With the highest cooling rate, 27.5◦C/h, the predicted
supersaturation was extremely high (Fig. 3). Also, the
broadest size distribution of crystals and the most irregular
shaped crystals were obtained with 27.5◦C/h cooling rate
(Fig. 4). The concentration level was most likely high enough
to exceed metastable limit throughout the crystallization
with 27.5◦C/h cooling rate. This caused the solution cool
down faster than the solute could transfer onto existing
crystals, and consequently the spontaneous nucleation took
place throughout the process.

The concentration level lowered significantly when cool-
ing rate decreased from 27.5 to 3.9◦C/h (Fig. 3). Most likely
the level of primary nucleation during the crystallization was
small with cooling rates from 9.2 to 3.9◦C/h since also the
size distribution became narrower than with cooling rate of
27.5◦C/h. With 3.9◦C/h cooling rate, however, influence of
attrition of crystals may have become greater, since the size
distribution is slightly broader than with cooling rates of 9.2
or 5.5◦C/h. (Fig. 4)

On the reliability of the predictions, the process conditions
d and
p ess)
f the
h the
p the
m are
p d of
i tions
c 2 to

als from
Fig. 4. Cumulative size distributions of the product cryst
iffered both chemically (the highest supersaturation)
hysically (new crystals forming throughout the proc

rom the calibration measurements remarkably when
ighest, 27.5◦C/h, cooling rate was used. Therefore,
redictions from that crystallization experiment are
ost uncertain of all crystallizations; predicted values
robably higher than true values. However, the tren

ncreasing supersaturation compared to other crystalliza
an be investigated. With other cooling rates from 9.

sulfathiazole crystallizations using four different cooling rates.
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Fig. 5. References of the X-ray diffraction patterns of polymorphs of sulfathiazole.

3.9◦C/h, the process conditions were close to the calibration
measurements as well as close to the values of the validation
procedure [20]. Therefore, the predictions from those
measurements can be considered reliable not only by trend
but also the true concentration value.

3.2. Polymorph characterization

3.2.1. XRPD patterns
The theoretical XRPD patterns (CCDC) of sulfathiazole

polymorphs are presented inFig. 5.

Table 1
Compositions of sulfathiazole samples

Sample XRPD results Calibration set Test set

Polymorph: SUTHAZ 01 02 05 01 02 05 01 02 05

Bulk 0.2 0.5 0.2 0.1 0.21± 0.01 0.51± 0.01 0.09± 0.01 0.17± 0.01 0.54± 0.01 0.08± 0.01
P25W75A 0.2 0.8 0 0 0.24± 0.04 0.67± 0.03 n.d. 0.23± 0.05 0.73± 0.05 n.d.
P25W75A 0.3 0.7 0 0 0.27± 0.05 0.69± 0.01 n.d. 0.24± 0.03 0.73± 0.02 n.d.
P25W75B 0.2 0.6 0.2 0 0.22± 0.04 0.67± 0.01 n.d. 0.17± 0.05 0.69± 0.05 n.d.
P25W75C 0.2 0.6 0.2 0 0.24± 0.05 0.67± 0.04 n.d. 0.18± 0.02 0.71± 0.04 n.d.
P25W75D 0.3 0.6 0.1 0 0.30± 0.05 0.65± 0.04 n.d. 0.27± 0.00 0.71± 0.01 n.d.
P25W75D 0.3 0.7 0 0 0.36± 0.05 0.70± 0.04 n.d. 0.25± 0.05 0.71± 0.05 n.d.
P50W50A 0.2 0.6 0.2 0 0.26± 0.02 0.66± 0.04 n.d.
P50W50A 0.2 0.7 0.1 0 0.22± 0.02 0.70± 0.04 n.d. 0.19± 0.04 0.73± 0.02 n.d.
P50W50B 0.2 0.7 0.1 0 0.23± 0.04 0.66± 0.00 n.d. 0.23± 0.05 0.71± 0.05 n.d.
P50W50C 0.4 0.6 0 0 0.30± 0.05 0.70± 0.04 n.d. 0.30± 0.05 0.75± 0.05 n.d.
P50W50D 0.2 0.7 0.1 0 0.20± 0.05 0.70± 0.04 n.d. 0.20± 0.04 0.73± 0.04 n.d.
P50W50D 0.2 0.8 0 0 0.25± 0.07 0.70± 0.03 n.d. 0.24± 0.09 0.75± 0.00 n.d.
P75W25A 0.1 0.8 0.1 0 0.15± 0.05 0.75± 0.04 n.d. 0.14± 0.05 0.79± 0.05 n.d.
P75W25A 0.3 0.7 0 0 0.28± 0.09 0.67± 0.04 n.d. 0.25± 0.07 0.72± 0.05 n.d.
P75W25B 0.3 0.6 0.1 0 0.28± 0.03 0.65± 0.01 n.d. 0.20± 0.05 0.72± 0.05 n.d.
P75W25C 0.2 0.7 0.1 0 0.21± 0.00 0.69± 0.03 n.d. 0.19± 0.05 0.75± 0.05 n.d.
P 0.7
P 0.7
P 0.7
P 0.1
P 0.2
P
W
W

M
p
B

75W25C 0.2 0.7 0.1 0 0.20± 0.05
75W25D 0.2 0.7 0.1 0 0.22± 0.04
75W25D 0.4 0.6 0 0 0.31± 0.05
A 0.7 0.1 0 0.2 0.70± 0.06
D 0.7 0.2 0 0.1 0.68± 0.14
D 0.7 0.1 0 0.2
A 0.2 0.7 0.1 0

D 0.3 0.7 0 0 0.31± 0.05 0.6

ean estimated level of confidence of estimated compositions based on X
ropanol, W, water and numbers behind the letters represent percentage com
= 9.5◦C/h, C = 6.5◦C/h, D = 3.9◦C/h.
3± 0.05 n.d.
0± 0.06 n.d. 0.20± 0.12 0.73± 0.06 n.d.
0± 0.04 n.d. 0.26± 0.05 0.76± 0.05 n.d.
1± 0.08 0.20± 0.00 0.64± 0.05 0.17± 0.04 n.d.
0± 0.22 0.11± 0.14 0.71± 0.05 0.15± 0.16 n.d.

0.68± 0.11 0.24± 0.06 n.d.
0.18± 0.01 0.75± 0.01 n.d.
6± 0.04 0.02± 0.02 0.28± 0.05 0.71± 0.05 n.d.

RPD measurements± 0.1. Sample names consist on solvent composition, P, 1-
position in solvent and cooling rate is represented in the final letter, A = 27.5◦C/h,
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Fig. 6. Example DRIFT spectra.

These diffraction patterns were used as reference values
in estimation of polymorphic composition of the samples.
XRPD patterns from samples revealed that the samples
crystallized from pure 1-propanol represented mostly
SUTHAZ01 and ones crystallized from water or aqueous 1-
propanol represented mostly SUTHAZ02. However, most of
the samples were more or less mixtures of two or more poly-
morphs as is illustrated from quantification result inTable 1.

3.2.2. DRIFT spectra
Example spectra of sulfathiazole solid-state samples in

Fig. 6 illustrate that the visible difference in the spectrum
lies within the wave number range from 3500 to 3250 cm−1.

There are two intense characteristic bands at 3467 and
3365 cm−1in the spectrum obtained from sample contain-
ing mostly SUTHAZ01 that do not occur in the spectrum
measured from sample containing mostly SUTHAZ02. The
spectra from samples containing mostly SUTHAZ02, but also

different fractions of other polymorphs, represent the slight
differences compared to example spectrum inFig. 6: the vari-
ation in ratio of bands in 3351 and 3279 cm−1 is different
when the minor polymorph composition changes. Conse-
quently, the polymorphic composition of samples could be
studied further by multivariate analysis within the spectral
range from 3500 to 2500 cm−1. The primary analysis of co-
variance confirmed this being the most relevant spectral band
range for analysis purposes. There is also lot of information
in spectral range from 1800 to 600 cm−1, but the relation to
the polymorph composition seems to be more apparent in the
range of 3500–2500 cm−1 in terms of multivariate analysis.

3.2.3. MSPC analysis of DRIFT spectra
MSPC charts are visualized inFig. 7.
Upper left corner ofFig. 7visualizes how the samples are

located within the model (T2 chart) and 95% limit line is pre-
sented. Upper right hand corner ofFig. 7visualizes the 95%
confidence levels for the variables within the model and the
variables of example sample in that chart (T2 contributions).
Most of the samples lied within the 95% confidence limit in
theT2 chart inFig. 7. The samples exceeding the confidence
limit were the ones crystallized from pure 1-propanol and
represent SUTHAZ01 based on XRPD. It could be seen from
T2 contributions inFig. 7that the spectral range where these
s here
t ted.
M hich
p rner
o
i ower
r ance
o .
I seline
b C

harts o
Fig. 7. MSPC c
amples exceeded the confidence limit was the area w
wo intense bands typical for SUTHAZ01 were loca
SPC charts proved to be capable for determining w
olymorph the particular sample represent. Lower left co
f Fig. 7 represents the residuals of the samples (Q chart),

.e., how the samples are located in residual space. L
ight corner represents 95% confidence limits of the vari
f the data that is left in the residuals (Q contributions)

n Q chart, some samples represent unexceptional ba
ehavior as is seen inQcontribution chart. Therefore, MSP

f the DRIFT data.
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Fig. 8. Score vectors of PCA analysis of the DRIFT spectra. Percentage
of variation explained (R2) by a particular score vector is represented in
parenthesis.

charts were powerful in determining also possible errors
within the measurement procedure.

Generally speaking, MSPC illustrates whether or not
particular sample represents similar data structure than the
other samples and also which variables, i.e., spectral points
cause these samples to be different. In practice, the samples
representing polymorphs different than modeled ones can
be separated. However, to distinguish between the samples
being erroneous measurements or sample representing
phenomenon different than the average modeled samples do
knowledge on the samples and their properties or extended
data set is needed.

3.2.4. PCA score vectors of DRIFT spectra
From the three first score vectors of PCA plotted inFig. 8,

it can be observed that samples tend to cluster into two main
groups.

The first group consisted of the samples that were crys-
tallized from 1-propanol (PD and PA) representing mainly
SUTHAZ01 based on XRPD. The other group consisted
of the samples crystallized from solvents containing water
and main component according to XRPD was SUTHAZ02.
In bigger cluster (Fig. 8), the samples from water (WA and
WD) the most pure SUTHAZ02 samples lied in the bottom
and the bulk samples (Bulk), which were the most impure
samples at the top of the group.

ased
o in-
d the
s vec-
t also
s

3
ented

i T-
H ved

values in columns from two to five, and the compositions
predicted from DRIFT spectra for the calibration set and
test set are represented in columns from 6 to 10. As
mentioned in Section2.4.1, SUTHAZ01, SUTHAZ02 and
SUTHAZ05 could be modeled by the single PLS model
and the PLS modeling results exist only for these three
polymorphs.

It can be observed that concentration predictions for
both calibration and test sets are consistent with XRPD
results. Main components SUTHAZ01 and SUTHAZ02
can be predicted with appropriate accuracy compared to
accuracy of XRPD predictions. Also, the small fractions
of SUTHAZ05 can be distinguished from DRIFT data via
PLS analysis, which indicates that actual differences exist
within the data when sample contains even small fractions
of SUTHAZ05 to that when this polymorph does not
exist.

The prediction result is strongly restricted by the fact
that the accuracy of the reference values out of XRPD
results is rather low. The predictions obtained when using
PLS model, can be said to give encouraging results, since
variances of the predictions of parallel DRIFT samples are
rather low and, despite of the high uncertainty of reference
XRPD values, the compositions predicted using PLS model
compromise fairly well to observations, i.e., to XRPD
results.
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i ity
s fully
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PCA provides illustrative tool to separate samples b
n their main polymorph component. In addition, PCA
icates whether or not there is systematic trend in how
amples settle within the cluster in the space of score
ors and that could lead to the possibility to separate
mall-scale changes within the sample composition.

.2.5. PLS analysis
The results of PLS analysis of the samples are repres

n Table 1. XRPD results for polymorphs SUTHAZ01, SU
AZ02, SUTHAZ and SUTHAZ05 were used as obser
,
.2.6. Process condition effects on polymorphic outcom

Theoretically, the level of supersaturation could influe
n the polymorphic outcome of the crystals due to the
hat solubilities of the specific polymorphs to the partic
olvent are different[1]. In principle, if the cooling take
lace at concentration level that lies between the sol

ty of two polymorphs, the polymorph with lower solubil
hould appear. If the concentration level could be care
ontrolled, it might be possible to control the polymorp
utcome of product crystals. Obtaining a product that w
ontain the desired polymorph only is complicated by
tepwise conversion between different forms. As state
stwald’s law, a metastable polymorph will eventually
ergo a phase transformation to a more stable one, and fi

o the thermodynamically most stable form. In addition,
ormation of polymorphs can be driven by several diffe
actors in crystallization; one being the solvent compos
nd the most dominant factor is not unambiguously reso
y the time being[1].

In this study, polymorphic composition of the prod
rystals seemed not to depend on the cooling rate
lthough the concentration levels in crystallization were
arkably different (Fig. 3), but the polymorph compositio
f product crystals crystallized from certain solvent w
lmost equal. This can be due to the fact that differe

n solubilities of different sulfathiazole polymorphs
xample in 1-propanol are rather small[17]. As was previ
usly mentioned, the dominant effect for the polymorp
utcome of crystals appeared to be the solvent compo
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and more specifically whether or not the solvent contained
water.

4. Conclusions

Sulfathiazole was crystallized from five aqueous 1-
propanol mixtures using four different constant cooling rates.
Attenuated total reflection Fourier transform infra red was
applied for in situ concentration measurement. The obtained
crystals were characterized using X-ray powder diffraction
and diffuse reflectance Fourier transform-infra red. Esti-
mations of polymorphic composition were carried out by
correlating theoretical reference diffractograms from CCDC
to the samples measured with XRPD. Principal component
analysis, multivariate statistical process control charts and
partial least squares modeling techniques were introduced
to analyze DRIFT data for polymorph characterization.

ATR-FTIR technique gave a possibility to evaluate con-
centration level effects on product properties and that was
found to be significant for size and shape of product crystals
but not for polymorphic outcome. Polymorphic outcome
seemed to be driven by solvent composition and more specif-
ically whether or not the solvent contained water. The XRPD
results revealed that the product crystals were mixtures of
two or more polymorphs main component being SUTHAZ01
w en
c

rful
t rom
D sified
b and
a plied
t ysis
c ed
p FT
d rph
c

A

ogy
A wl-
e
a .
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Syst. 44 (1998) 175–185.

24] T. Fearn, Chemom. Intell. Lab. Syst. 50 (2000) 47–52.
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